skip to main content


Search for: All records

Creators/Authors contains: "Pucha, Ragadeepika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigate the effects of stellar populations and sizes on Lyαescape in 27 spectroscopically confirmed and 35 photometric Lyαemitters (LAEs) atz≈ 2.65 in seven fields of the Boötes region of the NOAO Deep Wide-Field Survey. We use deep HST/WFC3 imaging to supplement ground-based observations and infer key galaxy properties. Compared to typical star-forming galaxies (SFGs) at similar redshifts, the LAEs are less massive (M≈ 107–109M), younger (ages ≲1 Gyr), smaller (re< 1 kpc), and less dust-attenuated (E(BV) ≤ 0.26 mag) but have comparable star formation rates (SFRs ≈ 1–100Myr−1). Some of the LAEs in the sample may be very young galaxies having low nebular metallicities (Zneb≲ 0.2Z) and/or high ionization parameters (log(U)2.4). Motivated by previous studies, we examine the effects of the concentration of star formation and gravitational potential on Lyαescape by computing SFR surface density, ΣSFR, and specific SFR surface density, ΣsSFR. For a given ΣSFR, the Lyαescape fraction is higher for LAEs with lower stellar masses. The LAEs have a higher ΣsSFR, on average, compared to SFGs. Our results suggest that compact star formation in a low gravitational potential yields conditions amenable to the escape of Lyαphotons. These results have important implications for the physics of Lyαradiative transfer and for the type of galaxies that may contribute significantly to cosmic reionization.

     
    more » « less
  2. Abstract

    We present a spectroscopic and photometric analysis of a sample of 416,288 galaxies from the Sloan Digital Sky Survey (SDSS) matched to mid-infrared (mid-IR) data from the Wide-field Infrared Survey Explorer (WISE). By using a new spectroscopic fitting package, GELATO (Galaxy/AGN Emission Line Analysis TOol), we are able to retrieve emission line fluxes and uncertainties for SDSS spectra and robustly determine the presence of broad lines and outflowing components, enabling us to investigate WISE color space as a function of optical spectroscopic properties. In addition, we pursue spectral energy distribution template fitting to assess the relative active galactic nucleus (AGN) contribution and nuclear obscuration to compare to existing mid-IR selection criteria with WISE. We present a selection criterion in mid-IR color space to select AGNs with an ∼80% accuracy and a completeness of ∼16%. This is the first mid-IR color selection defined by solely using the distribution of Type I and Type II optical spectroscopic AGNs in WISE mid-IR color space. Our selection is an improvement of ∼50% in the completeness of targeting spectroscopic AGNs with WISE down to an SDSSr< 17.77 mag. In addition, our new criterion targets a less-luminous population of AGNs, with on average lower [Oiii] luminosities by ∼30% ( > 0.1 dex) compared to typical WISE color–color selections. With upcoming large photometric surveys without corresponding spectroscopy, our method presents a way to select larger populations of AGNs at lower AGN luminosities and higher nuclear obscuration levels than traditional mid-IR color selections.

     
    more » « less
  3. Abstract We announce the second data release (DR2) of the NOIRLab Source Catalog (NSC), using 412,116 public images from CTIO-4 m+DECam, the KPNO-4 m+Mosaic3, and the Bok-2.3 m+90Prime. NSC DR2 contains over 3.9 billion unique objects, 68 billion individual source measurements, covers ≈35,000 square degrees of the sky, has depths of ≈23 mag in most broadband filters with ≈1%–2% photometric precision, and astrometric accuracy of ≈7 mas. Approximately 1.9 billion objects within ≈30,000 square degrees of sky have photometry in three or more bands. There are several improvements over NSC DR1. DR2 includes 156,662 (61%) more exposures extending over 2 more years than in DR1. The southern photometric zero-points in griz are more accurate by using the Skymapper DR1 and ATLAS-Ref2 catalogs, and improved extinction corrections were used for high-extinction regions. In addition, the astrometric accuracy is improved by taking advantage of Gaia DR2 proper motions when calibrating the astrometry of individual images. This improves the NSC proper motions to ∼2.5 mas yr −1 (precision) and ∼0.2 mas yr −1 (accuracy). The combination of sources into unique objects is performed using a DBSCAN algorithm and mean parameters per object (such as mean magnitudes, proper motion, etc.) are calculated more robustly with outlier rejection. Finally, eight multi-band photometric variability indices are calculated for each object and variable objects are flagged (23 million objects). NSC DR2 will be useful for exploring solar system objects, stellar streams, dwarf satellite galaxies, quasi-stellar objects, variable stars, high proper-motion stars, and transients. Several examples of these science use cases are presented. The NSC DR2 catalog is publicly available via the NOIRLab’s Astro Data Lab science platform. 
    more » « less